Metrics¶
- 
snap_ml_spark.Metrics.accuracy(dataWithPredictions)¶
- Parameters: - dataWithPredictions – binary predictions computed by the LogisticRegression or SupportVectorMachine predict() function - Returns: - accuracy computed based on the binary predictions of a classifier (LogisticRegression, SupportVectorMachines) - Return type: - double 
- 
snap_ml_spark.Metrics.f1score(dataWithPredictions)¶
- Parameters: - dataWithPredictions – binary predictions computed by the LogisticRegression or SupportVectorMachine predict() function - Returns: - f1score metric (2*(precision*recall)/(precision+recall)), computed based on the binary predictions of a classifier (LogisticRegression, SupportVectorMachines) - Return type: - double 
- 
snap_ml_spark.Metrics.logisticLoss(dataWithPredictions)¶
- Parameters: - dataWithPredictions – probabilities computed by the LogisticRegression predict_proba() function - Returns: - logistic loss computed by the logistic regression predicted probabilities - Return type: - double 
- 
snap_ml_spark.Metrics.meanSquaredError(dataWithPredictions)¶
- Parameters: - dataWithPredictions – linear regression predictions, predicted by the RidgeRegression predict() function - Returns: - mean squared error computed based on the provided dataWithPredictions parameter - Return type: - double 
- 
snap_ml_spark.Metrics.precision(dataWithPredictions)¶
- Parameters: - dataWithPredictions – binary predictions computed by the LogisticRegression or SupportVectorMachine predict() function - Returns: - precision metric (TP/(TP+FP)), computed based on the binary predictions of a classifier (LogisticRegression, SupportVectorMachines) - Return type: - double 
- 
snap_ml_spark.Metrics.recall(dataWithPredictions)¶
- Parameters: - dataWithPredictions – binary predictions computed by the LogisticRegression or SupportVectorMachine predict() function - Returns: - recall metric (TP/(TP+FN)), computed based on the binary predictions of a classifier (LogisticRegression, SupportVectorMachines) - Return type: - double