Metrics¶
- 
snap_ml_spark.Metrics.accuracy(dataWithPredictions)¶ - Parameters
 dataWithPredictions – binary predictions computed by the LogisticRegression or SupportVectorMachine predict() function
- Returns
 accuracy computed based on the binary predictions of a classifier (LogisticRegression, SupportVectorMachines)
- Return type
 double
- 
snap_ml_spark.Metrics.f1score(dataWithPredictions)¶ - Parameters
 dataWithPredictions – binary predictions computed by the LogisticRegression or SupportVectorMachine predict() function
- Returns
 f1score metric (2*(precision*recall)/(precision+recall)), computed based on the binary predictions of a classifier (LogisticRegression, SupportVectorMachines)
- Return type
 double
- 
snap_ml_spark.Metrics.logisticLoss(dataWithPredictions)¶ - Parameters
 dataWithPredictions – probabilities computed by the LogisticRegression predict_proba() function
- Returns
 logistic loss computed by the logistic regression predicted probabilities
- Return type
 double
- 
snap_ml_spark.Metrics.meanSquaredError(dataWithPredictions)¶ - Parameters
 dataWithPredictions – linear regression predictions, predicted by the RidgeRegression predict() function
- Returns
 mean squared error computed based on the provided dataWithPredictions parameter
- Return type
 double
- 
snap_ml_spark.Metrics.precision(dataWithPredictions)¶ - Parameters
 dataWithPredictions – binary predictions computed by the LogisticRegression or SupportVectorMachine predict() function
- Returns
 precision metric (TP/(TP+FP)), computed based on the binary predictions of a classifier (LogisticRegression, SupportVectorMachines)
- Return type
 double
- 
snap_ml_spark.Metrics.recall(dataWithPredictions)¶ - Parameters
 dataWithPredictions – binary predictions computed by the LogisticRegression or SupportVectorMachine predict() function
- Returns
 recall metric (TP/(TP+FN)), computed based on the binary predictions of a classifier (LogisticRegression, SupportVectorMachines)
- Return type
 double